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Son muchas las situaciones de investigación aplicada en las
ciencias sociales y biológicas donde es necesario cuantificar el
acuerdo existente entre las medidas reportadas por dos (o más) ob-
servadores (jueces o evaluadores) o entre dos (o más) instrumen-
tos de medición de una determinada respuesta. Medidas altas de
acuerdo indican la existencia de consenso en el proceso de clasifi-
cación de los observadores, de intercambiabilidad entre los instru-
mentos de medición o de perfecta reproductibilidad de la medida.

Se han propuesto muchos coeficientes de acuerdo bajo dos
grandes situaciones prácticas, dependiendo de la escala de medida
requerida por el instrumento de medición. Cuando la medida es
cuantitativa, uno de los índices más utilizado es el coeficiente de
correlación de Pearson.Es bien conocido que este coeficiente mi-

de la asociación entre dos variables, pero no proporciona informa-
ción válida acerca del acuerdo. Por ejemplo, el coeficiente de co-
rrelación entre una medida que es el doble de la primera es per-
fecto, pero el acuerdo entre ambas medidas es nulo. Más conve-
nientes son el coeficiente de correlación intraclase(Shrout y
Fleiss, 1979), un índice de fiabilidad que evalúa la intercambiabi-
lidad u homogeneidad entre medidas cuantitativas, los procedi-
mientos de la teoría de la generalizabilidad(Cronbach, Gleser y
Rajaratnam, 1972) y el coeficiente de concordancia(Lin y otros,
2002), un índice de reproductibilidad que evalúa el acuerdo mi-
diendo la desviación de los datos respecto de la línea de igualdad
o concordancia (45º) a través del origen. 

Cuando la medida es categórica, nominal u ordinal, el objeto es
la clasificación de un conjunto de objetos en categorías bien defi-
nidas y los procedimientos estadísticos para la evaluación del
acuerdo parten de una sugerencia de Scott (1955) de corregir del
acuerdo observado la proporción de casos para los que el acuerdo
tuvo lugar solo por azar (chance correction). Varias medidas des-
criptivasse han definido a partir de esta sugerencia (véase Zwick,
1988). Además del coeficiente π introducido por Scott (1955) y de
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una propuesta original de Bennett y otros (1954), el más popular
es el coeficiente κ presentado por Cohen (1960). Las medidas des-
criptivas son un enfoque sencillo y universalmente aceptado de
medir el acuerdo, pero tienen el inconveniente de que no permiten
comprender la naturaleza del acuerdo y del desacuerdo (véase, sin
embargo, von Eye y Mun, 2005) y se basan en algún modelo esta-
dístico que en su aplicación práctica se asume como válido. 

Contra la simplicidad de las medidas descriptivas surgió un en-
foque que utiliza modelos loglinealespara descomponer los patro-
nes de acuerdo y desacuerdo observados mediante la formulación
de un conjunto específico de parámetros y del manejo adecuado de
matrices de diseño, asociado al procedimiento de ajuste condicio-
nal de modelos. Cada uno de los modelos loglineales permite des-
cribir el acuerdo mediante una medida (λ) de naturaleza similar a
las desarrolladas bajo el enfoque descriptivo,  aunque basada en un
concepto de corrección del azar diferente (Guggenmoos-Holtzman
y Vonk, 1998).

El enfoque más general emplea modelos con mezcla de distri-
buciones(o modelos mixture), que descomponen un conjunto de
objetos en dos clases latentes, una asociada al acuerdo de objetos
de fácil clasificación (acuerdo sistemático), con probabilidad µ, y
la otra al acuerdo de objetos de difícil clasificación (acuerdo alea-
torio y desacuerdo), con probabilidad (1-µ). A su vez, la probabi-
lidad µ de la clase latente para la distribución de acuerdo perfecto
puede también considerarse como una medida de acuerdo basada
en el mismo criterio de corrección del azar de los modelos logli-
neales,  aunque utiliza una escala de medida diferente.

En este trabajo se realiza un análisis comparativo de los tres en-
foques citados definiendo un conjunto de seis medidas propuestas
en la literatura para evaluar el acuerdo e ilustrando su utilización
mediante un ejemplo tomado de la investigación psicológica. Para
cada enfoque se analizan los procedimientos de corrección del
azar,  las restricciones que deben aplicarse a los modelos para re-
producir las medidas descriptivas y la interpretación de sus pará-
metros. La siguiente sección introduce el ejemplo y algunas cues-
tiones básicas necesarias para proceder en las siguientes secciones
con la definición de medidas descriptivas, basadas en modelos
loglineales y modelos mixture. Finalmente se proponen algunas
sugerencias a tener en cuenta por el investigador aplicado para
abordar una más apropiada valoración del acuerdo.

Notación y ejemplo

Sea un conjunto de K observadores (jueces o evaluadores) que
clasifican independientemente N sujetos (u objetos) sobre una es-
cala categórica (nominal u ordinal) compuesta de M categorías. La
notación general, para el caso de K= 2 observadores, suele repre-
sentar las frecuencias (nij) y/o las proporciones (pij) en una tabla
de acuerdocomo la que se reproduce en el cuadro 1.  

Dos aspectos diferentes de la distribución conjunta nij de las
respuestas son el grado de acuerdoy el grado de asociación. Para
que exista acuerdo se requiere que exista asociación, pero es posi-
ble que exista un alto grado de asociación sin que exista un alto
grado de acuerdo (Bloch y Kraemer, 1989). Por ejemplo, si el ob-
servador A valora los objetos sistemáticamente una categoría su-
perior a la del observador B, el grado de acuerdo será bajo, pero el
grado de asociación alto. En este trabajo nos interesa específica-
mente la evaluación del grado de acuerdo. 

En el cuadro 2 se muestra un ejemplo, tomado de un trabajo de
Dillon y Mullani (1984), en el que K=2 observadores registraron

un conjunto de 164 respuestas cognitivas elicitadas en un estudio
de comunicación persuasiva sobre una escala con M=3 categorías
de respuesta («positiva», «neutral» y «negativa»). Cada casilla re-
presenta las frecuencias (en negrita) y las probabilidades (entre pa-
réntesis). 

Cabe considerar dos contextos (Martín y Femia, 2004; Agresti,
2002). Si uno de los observadores, por ejemplo A, es un experto
medido sin error (‘gold standard’), el objetivo es evaluar la clasifi-
cación realizada por el observador falible B y entonces se trata de
un estudio de concordancia (o de validez). En cambio, si ninguno
de los dos observadores es experto (o sea, tienen una experiencia
similar), el objetivo es evaluar su grado de acuerdo y entonces se
trata de un estudio de consistencia (o fiabilidad). A su vez, los es-
tudios de fiabilidad pueden ser inter-observadores (A y B son ob-
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Cuadro 1
Notación general

Observador B

Observador 1 2 . . . j . . . M Marginal 
A A

1 n11 n12 . . . n1j . . . n1M n1+

(p11 ) (p12 ) (p1j ) (p1M ) (p1+ )

2 n21 n22 . . . n2j . . . n2M n2+

(p21 ) (p22 ) (p2j ) (p2M ) (p2+ )

. . . . . . . .

. . . . . . . .

. . . . . . . .

i ni1 ni2 . . . nij . . . niM ni+

(pi1 ) (pi2 ) (pij ) (piM ) (pi+ )

. . . . . . . .

. . . . . . . .

. . . . . . . .

M nM1 nM2 . . . nMj . . . nMM nM+

(pM1 ) (pM2 ) (pMj ) (pMM ) (pi+ )

Marginal n+1 n+2 n+j n+M n++ =N
B (p+1 ) (p+ 2 ) (p+j ) (p+M ) (p++ =1)

Nota: nij representan frecuencias de respuesta, pij representan probabilidades de respuesta.

Cuadro 2
Frecuencias (y probabilidades) del ejemplo de Dillon y Mullani (1984)

Observador A Observador B

Positiva Neutral Negativa Total

Positiva 61 26 5 92
(0.372) (0.159) (0.030) (0.561)

Neutral 4 26 3 33
(0.025) (0.159) (0.018) (0.201)

Negativa 1 7 31 39
(0.006) (0.043) (0.189) (0.238)

Total 66 59 39 164
(0.402) (0.360) (0.238) (1.000)
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servadores diferentes) o intra-observadores(A y B representan al
mismo observador que clasifica los objetos en dos o más ocasiones
distintas). Aunque se puede extender a otros contextos, este traba-
jo analiza la consistencia o fiabilidad inter-observadores.

Es también conveniente distinguir dos diferentes tipos de
muestreo. En el muestreo tipo I(muestreo multinomial) se prefija
el total muestral (N) y los marginales de fila y columna se asumen
aleatorios. En el muestreo tipo II(muestreo multinomial de pro-
ducto), por el contrario, se prefijan los marginales de fila (o de co-
lumna). Asumimos en este trabajo muestreo tipo I.

Medidas descriptivas de acuerdo entre observadores

La probabilidad de acuerdo observada

La forma más directa de medir el acuerdo utiliza la probabili-
dad de acuerdo observada(p0), que es simplemente la suma de las
proporciones de la diagonal principal de la tabla de acuerdo. Para
los datos del cuadro 2,

El principal problema de que adolece p0 es que expresa el
acuerdo bruto sin tener en cuenta que una parte del acuerdo obser-
vado puede ser debido al azar y ocurrir aún en el caso de que no
haya ninguna tendencia sistemática por parte de los observadores
para clasificar de forma similar los objetos. 

Dada una tabla de acuerdo entre 2 (o más) observadores, una
medida general de acuerdo corregido del azar (RCA), que distin-
gue la probabilidad de acuerdo observada (p0) de la probabilidad
de acuerdo esperada por azar (pe), es

(Ec. 1)

donde pe es el acuerdo que se atribuye al azar y 1-pe establece la
magnitud máxima de acuerdo no atribuido al azar. Las diferentes
opciones que se han planteado para definir una RCAhan consisti-
do en especificar alguna fórmula de corrección del azar para defi-
nir pe. Tres de las opciones más comunes se contemplan en este
trabajo. Otras opciones alternativas pueden consultarse en Dunn
(1989) y Shoukri (2004).

El coeficiente σ de Bennet y otros

Una forma simple de corrección del azar originalmente pro-
puesta en un trabajo de Bennet y otros (1954) es el coeficiente σ
(coeficiente Sigma), que utiliza un valor de corrección del azar fi-
jo,  la inversa del número de categorías (M), 

(Ec. 2)

Esta forma de corrección asume que los observadores clasifi-
can los objetos uniformemente entre las categorías de respuesta
(supuesto de uniformidad marginal). σ ha sido reivindicado como
una medida de acuerdo estable por Holley y Guilford (1964), que

lo llamaron índice G, Janson y Vegelius (1979), que lo llamaron
coeficiente C, Brennan y Prediger (1981), que lo llamaron índice
κn, y Maxwell (1977), que lo llamó coeficiente RE (véase Zwick,
1988; Hsu y Field, 2003). Sustituyendo la Ec. 2 en la Ec. 1 se ob-
tiene

(Ec. 3)

Aplicando la Ec. 3 a los datos del cuadro 2, σ= 0.579. Para el
caso dicotómico una fórmula abreviada para la Ec. 3 es: σ= 2p0–1. 

El coeficiente π de Scott

En un trabajo de Scott (1955) se propuso como corrección del
azar el cuadrado de la suma de los promedios de los marginales de
fila y columna para cada categoría 

(Ec. 4)

Para los datos del cuadro 2 la probabilidad esperada por azar es

Esta corrección asume que la distribución de las probabilidades
marginales es homogénea para ambos observadores (supuesto de
homogeneidad marginal), se denomina coeficiente Piy se define
utilizando Ec. 1 como

(Ec. 5)

Para los datos del cuadro 2, el coeficiente pi es π= 0.557.

El coeficiente κ de Cohen

Basándose en el trabajo de Scott (1955), Cohen (1960) propu-
so una fórmula de corrección del azar consistente en calcular el va-
lor esperado de los elementos diagonales de la tabla de acuerdo
mediante 

(Ec. 6)  

que asume independencia entre observadores y denominó coefi-
ciente Kappa

(Ec. 7)

Para los datos del cuadro 2, 

pκ
e= (.561)(.402)+(.201)(.360)+(.238)2= 0.355

κ =
p0 − pe

κ

1− pe
κ

pe
κ = pi+

i
∑ + p+i

π =
p0 − pe

π

1− pe
π

pe
π =

0.561+ 0.402
2







2

+
0.201+ 0.360

2






2

+
0.238+ 0.238

2






2

= 0.367

pe
π =

pi + p+i

2




i

∑
2

σ =
p0 − (1/ M)

(M −1) / M

pe
σ = M

1
M





i

∑
2

=
1
M

RCA=
p0 − pe

1− pe

p0 = pii
i

∑ = 0.372+ 0.159+ 0.189= 0.720
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y κ= 0.567 Kappa tiene propiedades estadísticas óptimas como
medida de acuerdo. En primer lugar, cuando el acuerdo observado
(p0) es igual al acuerdo esperado por azar (pκ

e) entonces κ= 0. En
segundo lugar, κ tomará su valor máximo de 1 si y solo si el acuer-
do es perfecto (o sea, p0= 1 y pκ

e= 0). Y, finalmente, κ nunca pue-
de ser menor de –1. Sin embargo,  los límites superior e inferior
del índice son función de las probabilidades marginales. Así, κ to-
ma el valor 1 si y solo si las probabilidades marginales son exac-
tamente iguales y todas las casillas no diagonales son cero. 

Desde su formulación, κ se convirtió en la medida de acuerdo
más utilizada en las ciencias biológicas y sociales. Fleiss, Cohen y
Everitt (1969) derivaron una fórmula asintótica para la desviación
típica 

(Ec. 8)

que permite probar la hipótesis nula de acuerdo nulo entre ambos
observadores empleando z= κ / S (κ).

La utilización de Kappa como medida de acuerdo ha recibido
muchas críticas. Básicamente, se han detectado dos problemas que
pueden explicarse en términos de los efectos de sesgoy prevalen-
cia. El efecto de sesgo de un observador respecto de otro ocurre
cuando sus probabilidades marginales son diferentes; el sesgo es
mayor cuanto más discrepantes son sus respectivas probabilidades
marginales y menor cuanto más similares son. El efecto de preva-
lencia ocurre en presencia de una proporción global extrema de re-
sultados para una categoría. Ambos efectos se han demostrado en
los trabajos de Spitznagel y Hazer (1985), Feinstein y Cicchetti
(1990), Byrt, Bishop y Carlin (1993), Agresti, Ghosh y Bini
(1995), Lantz y Nebenzahl (1996) y Hoehler (2000), entre otros.
Un conjunto de 4 casos paradójicos para tablas 2 × 2 se muestra en
el cuadro 3. En los dos primeros casos, siendo p0= .85, las propor-
ciones de casos discrepantes prácticamente idénticas y las distri-
buciones marginales muy similares, κ2 es menos de la mitad de κ1

y lo mismo sucede con π pero no con σ. Este efecto diferencial se
atribuye a que la prevalencia de casos positivos es en el segundo

caso de 0.80. En los dos últimos casos, siendo p0= .60, las proba-
bilidades marginales del observador A iguales pero las probabili-
dades marginales del observador B discrepantes, κ4 es el doble de
κ3. Este efecto diferencial se atribuye a la discrepancia que existe
entre las probabilidades marginales del observador B. Los mismos
problemas afectan también al coeficiente π, pero no a σ.

Modelado estadístico del acuerdo entre observadores

Modelos loglineales

En lugar de describir el acuerdo mediante un índice, un enfoque
alternativo desarrollado durante la década de los 80 (Tanner y
Young, 1985a; Agresti,1992) consiste en analizar la estructura del
acuerdo y desacuerdo existente en los datos con modelos loglinea-
les. Dos rasgos cruciales de este enfoque son la posibilidad de pro-
bar el ajuste de los modelos y su capacidad de generalización a va-
riables de respuesta ordinales (Tanner y Young, 1985a,b; Schuster
y von Eye, 2001), al caso de más de dos observadores (Agresti,
1992) y a la inclusión de una o más covariantes (Graham, 1995).

Los modelos loglineales modelan el acuerdo observado en tér-
minos de componentes, tales como el acuerdo esperado por azar y
el acuerdo no esperado por azar. Dado un conjunto de N objetos a
clasificar por parte de dos observadores en M categorías, el mode-
lo de independencia,

(Ec. 9)

donde mij es el valor esperado y λA
i y λB

j son efectos debidos a la
categorización de los observadores A y B, es el modelo básico que
representa el acuerdo esperado por azar y asume independencia es-
tadística entre ambos observadores. 

Parámetros adicionales pueden incorporarse al modelo básico
de la Ec. 9 con la finalidad de probar hipótesis específicas relativas
al acuerdo y desacuerdo, el más importante de los cuales es el con-
junto de parámetros diagonales δij. Puesto que el acuerdo entre ob-
servadores se concentra en las casillas de la diagonal principal, de-
finiendo δij= δiIi se obtiene el modelo de cuasi-independencia(QI)

(Ec. 10)

donde Ii es una variable ficticia que es 1 cuando i= j y 0 cuando i≠
j, y la transformación exp(δi) representa el grado de acuerdo aso-
ciado a la categoría i (Guggenmoos-Holtzman y Vonk, 1998; von
Eye y Mun, 2005). Un modelo más simple, que asume constancia
del acuerdo sistemático entre categorías y se obtiene definiendo
δij= δIi, es el modelo de cuasi-independencia constante(QIC), 

(Ec. 11)

donde δ representa el acuerdo más allá del azar (independencia)
que se asume constante para todas las categorías. Como conse-
cuencia, las razones odds locales de los valores esperados mij se
asumen iguales (Guggenmoos-Holtzman, 1996).

La transformación exp(δij) se relaciona directamente con la ca-
pacidad de los observadores para distinguir entre las categorías de
la tabla de acuerdo (Darroch y McCloud, 1986; Agresti, 2002).

log mij( ) = λ + λ i
A + λ i

B + δI i

log mij( ) = λ + λ i
A + λ i

B + δ i I i

log mij( ) = λ + λ i
A + λ j

B

S(κ ) =
1( )

1− pe
κ n

pe
κ + pe

κ( )2
− pi+ + p+i pi+ + p+i( )

i
∑

Cuadro 3
Conjunto de 4 casos paradójicos de Byrt y otros (1993)

Observador B

Caso 1 Sí No Total Indice
Observador A Sí 0.40 0.09 0.49 σ1= .70

No 0.06 0.45 0.51 π1= .70
Total 0.46 0.54 1.00 κ1= .70

Caso 2 Sí No Total
Observador A Sí 0.80 0.10 0.90 σ2= .70

No 0.05 0.05 0.10 π2= .32
Total 0.85 0.15 1.00 κ2= .32

Caso 3 Sí No Total
Observador A Sí 0.45 0.15 0.60 σ3= .20

No 0.25 0.15 0.40 π3= .12
Total 0.70 0.30 1.00 κ3= .13

Caso 4 Sí No Total
Observador A Sí 0.25 0.35 0.60 σ4= .20

No 0.05 0.35 0.40 π4= .19
Total 0.30 0.70 1.00 κ4= .26



Dado un modelo que asuma homogeneidad marginal, la razón de
oddsde que los observadores estén de acuerdo más que en desacuer-
do sobre si un ítem debe asignarse a la categoría i en lugar de j es

donde mij son valores estimados del modelo para la fila i y colum-
na j y δi y δj son los parámetros diagonales para las categorías i y
j. θij será mayor de 1 si la probabilidad de acuerdo de las casillas
diagonales es mayor que la de las casillas no diagonales. El grado
de distinción entre categoríasse define entonces como

donde valores πij � 0 se asocian con categorías indistinguibles,
mientras que valores πij � 1 indican categorías perfectamente dis-
tinguibles. 

Utilizando los parámetros diagonales exp(δij) se pueden definir
nuevas medidas de acuerdo y redefinir también algunas de las me-
didas descriptivas tratadas anteriormente. Una medida de acuerdo
basada en un modelo loglineal utiliza una definición de acuerdo
corregida del azar que difiere del caso descriptivo y se formula de
forma general mediante (Guggenmoos-Holzman y Vonk, 1998):

(Ec. 12)

donde p̂ii son probabilidades esperadas del modelo y, para la i-ési-
ma fila/columna,

(Ec. 13)

es la corrección debida al azar utilizada con modelos loglineales.
Puesto que los parámetros diagonales pueden ser negativos,
exp(δi) pueden ser menores de 1 y la escala resultante puede adop-
tar valores dentro del rango –1/1,  la misma escala utilizada por las
medidas descriptivas. 

Martín y Femia (2004) definieron una medida de acuerdo ba-
sado en el modelo QI (Ec. 10),  que sus autores entroncan con la
tradición de los tests de elección múltiple y llaman Delta (∆). El
modelo tiene (M – 1)2 – M grados de libertad residuales, y por tan-
to no es posible su aplicación a tablas de acuerdo 2 × 2. Para los
datos del cuadro 2, el vector de parámetros es exp(δi)= [11.745,
1.394, 26.083], el coeficiente de acuerdo resultante es, aplicando
Ec. 12,  ∆= 0.567 y el ajuste del modelo es óptimo: L2(1)= .18;p=
.67 (véase cuadro 4). Su interpretación se simplifica notablemente
utilizando exp(δi): el grado de acuerdo entre observadores es pro-
porcionalmente mayor para la tercera categoría, seguida de la pri-
mera y es prácticamente nulo para la segunda. Dado el ajuste del
modelo, prácticamente toda la asociación de la tabla de acuerdo se
concentra en la diagonal principal. 

Un modelo más parsimonioso se obtiene asumiendo un pará-
metro diagonal constante. El resultado es el modelo QIC (Ec. 11),

que deja (M – 1)2 – 1 grados de libertad, puede utilizarse con ta-
blas de acuerdo 2 × 2 y es la versión loglineal del índice α (Aic-
kin, 1990). Para los datos del cuadro 2, el parámetro diagonal
constante del modelo QIC es exp(δi) y la medida de acuerdo es λa=
.620, pero el ajuste no es aceptable: L2(3)= 10.13;p= .02 (véase
cuadro 4). Los datos empíricos no son compatibles con la hipóte-
sis de que el parámetro diagonal sea constante.

Asumiendo homogeneidad marginal entre ambos observadores
se obtiene el modelo QIH, que libera también (M – 1)2 – 1 grados
de libertad y puede también utilizarse con tablas de acuerdo 2 × 2.
Para los datos del cuadro 2, el vector de parámetros es exp(δi)=
[6.778, 1.040, 31.000], la medida de acuerdo es λ= .570 pero el
ajuste tampoco es aceptable: L2(3)= 22.59;p= .00 (véase cuadro
4). Nótese que en este modelo vuelve a comprobarse que en la ca-
tegoría 3 es proporcionalmente mayor el grado de acuerdo mien-
tras que en la segunda categoría es prácticamente nulo. 

Mediante la Ec. 12 pueden también obtenerse las versiones log-
lineales de los coeficientes σ de Bennett y π de Scott. Para el coe-
ficiente σ se requiere un modelo (QIU) que asuma nulidad de los
efectos de A y B e incluya los parámetros δi (lo que implica uni-
formidad marginal) y para el coeficiente π el modelo (QICH) de-
be incorporar una restricción de igualdad entre ambos observado-
res y un parámetro diagonal constante  (lo que implica homoge-
neidad marginal). Para los datos del cuadro 2, λa= .579 y λπ= .570
(véase cuadro 4). Sin embargo, debido a las restricciones requeri-
das, ninguno de los dos modelos se ajusta aceptablemente (véase
cuadro 4). Y, por otra parte, el coeficiente κ no puede obtenerse
mediante un modelo loglineal debido a la naturaleza de las res-
tricciones que requiere (véase Guggenmoos y Holzman, 1998). 

Modelos con mezcla de distribuciones (mixture models)

Una generalización del enfoque anterior consiste en incluir una
o más variables latentes no observables y asumir que los objetos
que los observadores deben clasificar se extraen de una población
que representa una mezcla de dos (o más) subpoblaciones finitas
(modelo mixture). Cada subpoblación identifica un conglomerado
de ítems homogéneos, por ejemplo, la subpoblación que represen-
ta acuerdo sistemático (X1), que afecta únicamente a las casillas de
la diagonal principal de la tabla de acuerdo, y la subpoblación que
representa acuerdo aleatorio y desacuerdo (X2), que afecta por

pei
λ =

p̂ii

exp δ i( )

λ = p̂ii −
p̂ii

exp δ i( )i
∑

π ij = 1−
1

θ ij

θ ij =
mii mij

mij mji

= exp δ i + δ j( )
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Cuadro 4
Modelos loglineales y medidas de acuerdo para los datos del cuadro 2

Modelo Restricciones Parámetros dia- Medida de Ajuste del
gonales exp(δi) acuerdo modelo

QI Independencia A y B [11.75,1.39,26.08] ∆= .567 L2(1)= .18; P= .67
(Delta) δi heterogéneo

QIC Independencia A y B [7.23] λα= .620 L2(3)= 10.13; P= .02
δi constante

QI Igualdad A y B [6.78,1.04,31.00] λ= .506 L2(3)= 22.59; P= .00
δi heterogéneo

QICH Igualdad A y B [4.83] λπ= .570 L2(5)= 40.06; P= .00
δi constante

QIU Efecto nulo A y B [7.96,3.39,4.04] λσ= .579 L2(5)= 43.05; P= .00
δi heterogéneo



igual a todas las casillas de la tabla. La distribución conjunta resul-
tante es una mezcla de una distribución que asume acuerdo perfec-
to entre observadores, con probabilidad µ, y una distribución que
asume independencia, con probabilidad 1–µ (Agresti,  1989, 2002).
Así, el modelo loglineal QI con una variable latente X y dos obser-
vadores (A y B) requiere 3 dimensiones y se representa mediante

(Ec. 14)

donde, para cada clase latente h (para h= 1,2) de X, se asume in-
dependencia local entre ambos observadores.  Los parámetros ξi

de los modelos mixturese relacionan estrechamente con los pará-
metros δi de los modelos loglineales ya que (Guggenmoos-Holtz-
man, 1993),

(Ec. 15) 

Con modelos mixture las medidas de acuerdo son proporciones
latentes para la subpoblación de acuerdo sistemático (µ). La diferen-
cia esencial entre modelos mixturey loglineal es que en los prime-
ros las medidas de acuerdo son proporciones (y por tanto se miden
en escala 0–1), mientras que las medidas descriptivas y las basadas
en modelos loglineales se miden en escala –1/1. El ajuste de los mo-
delos y sus parámetros son similares al caso loglineal en el caso de
parámetros exp(ξi)≥0, pero difieren en el caso de valores menores de
cero. A diferencia del concepto de corrección del azar del enfoque
descriptivo, que afecta a todos los casos de la tabla de acuerdo, los
modelos mixture asumen que la corrección del azar afecta única-
mente a la subpoblación de acuerdo/desacuerdo aleatorio.

Asumiendo un modelo QI, la ecuación que descompone las
probabilidades esperadas para cada una de las casillas de la tabla
de acuerdo (Schuster, 2002; Ato y otros, 2004) es 

(Ec. 16)

donde Ii es un indicador que selecciona los elementos diagonales,
µ es la proporción de la clase latente para la subpoblación de
acuerdo sistemático (en adelante, X1) y 1 – µ para la subpoblación
de acuerdo/desacuerdo aleatorio (en adelante, X2), φi es la proba-
bilidad marginal de X1 (que es igual para ambos observadores por
tratarse de una tabla diagonal) y ψA

i y ψB
j son las probabilidades

marginales de X2. El modelo resultante se llama también modelo
de observadores heterogéneos(Schuster y Smith, 2002). La medi-
da de acuerdo sistemático µ es equivalente a la ∆ de Martín y Fe-
mia (2004) cuando los parámetros son positivos. Nótese que µ
puede obtenerse también, utilizando las Ecs. 12 y 15, mediante

(Ec. 17)

donde el denominador será siempre 1 en el caso de valores
exp(ξi)= 0, en cuyo caso probabilidad observada y esperada por
azar son iguales y el acuerdo será nulo. 

Una medida de acuerdo para modelos mixturemás restrictiva es
el índice α propuesto por Aickin (1990) que se basa en el modelo
loglineal QIC (Ec. 10). A diferencia de µ, el índice α puede apli-

carse incluso a tablas de acuerdo 2 × 2, aunque el modelo resulta
saturado. La ecuación que descompone las probabilidades espera-
das es similar a la Ec. 16, pero los parámetros mantienen una cons-
tante de proporcionalidad, definida como la razón entre las proba-
bilidades marginales latentes φi/(ψA

iψB
j), que se asume igual para

todas las categorías. Debido a esta restricción, se denomina tam-
bién al modelo QIC como modelo de probabilidad predictiva
constante. 

Más restringido es el modelo que Schuster y Smith (2002) deno-
minan modelo de observadores homogéneos(modelo QIH), cuyas
probabilidades esperadas se obtienen (siendo ψA

i= ψB
j) mediante

(Ec. 18)

Este modelo asume que las probabilidades latentes para la sub-
población de acuerdo aleatorio son iguales para ambos observado-
res (supuesto de homogeneidad marginal).

Y de forma similar a los modelos loglineales pueden definirse
también modelos mixturepara reproducir los coeficientes π y σ. El
modelo para π (QICH) asume la existencia de una constante de
proporcionalidad, pero a diferencia del modelo QIC las probabili-
dades condicionales para X2 se asumen iguales en ambos obser-
vadores (supuesto de homogeneidad marginal). El modelo para φ
(QIU) asume que las probabilidades condicionales para X2 son
iguales para todo i (supuesto de uniformidad marginal). Ambos
modelos liberan un total de M2 – M – 1 grados de libertad residua-
les, pero su ajuste no es aceptable (cuadro 5).  

Finalmente, el coeficiente κ puede también definirse como mo-
delo mixture(véase Agresti, 1989), siendo φi= ψA

i = ψB
j, mediante

(Ec. 18)

donde simultáneamente se asume, además de constancia de los pa-
rámetros diagonales, igualdad entre observadores (homogeneidad
marginal) e igualdad entre clases (homogeneidad de clases laten-
tes). El modelo resultante (QIHX) libera también un total de M2 –
M – 1  grados de libertad residuales, pero el ajuste tampoco es
aceptable. 

El cuadro 5 presenta un resumen de las medidas de acuerdo de-
finidas con modelos mixture. Los modelos se representan en un
continuo desde el mínimo (QI) al máximo grado de restricción
(QIHX), junto con sus respectivas probabilidades latentes, índices
de acuerdo y bondad de ajuste. Por ejemplo, para el único modelo
interpretable (modelo QI), aplicando la Ec. 16 puede obtenerse la
siguiente descomposición de las probabilidades latentes para la ca-
silla 11 en la suma de sus correspondientes probabilidades condi-
cionales latentes:

.372 = (.567)(.600) + (.433)(.510)(.144) = .340 + .032 

lo cual implica que más del 91% representa acuerdo sistemático (o
sea, corresponde a la distribución que asume acuerdo perfecto en-
tre observadores) y el restante 9% acuerdo aleatorio y desacuerdo
(o sea, corresponde a la distribución que asume independencia en-
tre observadores), mientras que para la casilla 22 la descomposi-
ción resulta:

.159 = (.567)(.079) + (.433)(.361)(.727)  = .045 + .114

p̂ij = Iiµφi + (1− µ)ψ i

p̂ij = Iiαφ i + (1−α )ψ i
2

µ = p̂ii −
p̂ii

exp(ξ i )+1i
∑ [ ]

p̂ij = Iiµφi + (1− µ)ψ i
Aψ j

B

exp(ξ i ) = exp(δ i ) ±1

log mhij( ) = λ h
X + λ i

A + λ j
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y, por tanto, el acuerdo sistemático representa poco más de un 28%
y el acuerdo aleatorio y desacuerdo el restante 72%.

Nótese que para los datos del cuadro 2 la medida y el ajuste de
los modelos mixtureson similares a los del caso loglineal (cuadro
4), aunque la naturaleza de los modelos difiere sustancialmente en
ambos casos. Como ilustración de este argumento, el cuadro 6 pre-
senta las medidas descriptivas, los modelos loglineales y los mo-
delos mixturepara una tabla de acuerdo modificada donde respec-
to del cuadro 2 se han cambiado las frecuencias de las tres casillas
diagonales por valores más bajos (en concreto, las casillas diago-
nales 11, 22 y 33 cambian sus frecuencias de 61, 26 y 31 por 5)
con el objeto de forzar el carácter negativo de las medidas des-
criptivas y loglineales. A diferencia de las medidas representativas
de ambos enfoques, los modelos mixture utilizan medidas que im-
plican acuerdo nulo o no significativo, pero nunca acuerdo negati-
vo, un resultado difícil de justificar desde perspectivas tanto me-
todológicas como sustantivas para una «medida de acuerdo».

La interpretación de los parámetros exp(ξi) y de las probabili-
dades latentes, marginales y condicionales permiten comprender
cabalmente las pautas de acuerdo y desacuerdo y representan un
antídoto contra la resistente tradición de emplear medidas descrip-
tivas (y particularmente, el popular coeficiente κ) como medida
universal de acuerdo entre observadores. 

Debido a su generalidad y a la riqueza interpretativa de sus pará-
metros es en el contexto de los modelos mixture donde pueden eva-
luarse óptimamente las medidas de acuerdo. En este sentido, los mo-
delos loglineales representan un puente de unión entre enfoque des-
criptivo y enfoque mixture. Las medidas descriptivas clásicas repre-
sentan situaciones muy restrictivas que solo obtienen un ajuste acep-
table en el caso de que se cumplan las restricciones que asumen. En
el caso del popular coeficiente κ, por ejemplo, los supuestos de cons-
tancia de los parámetros diagonales, homogeneidad marginal y ho-
mogeneidad de clases latentes representan restricciones que se cum-
plen en una limitada proporción de las situaciones de investigación
aplicada en las que se valora el acuerdo entre observadores.

Software

En este trabajo, los modelos loglineales y mixturese estimaron
utilizando estimación por máxima verosimilitud y se ajustaron con
la ayuda del programa LEM (Vermunt, 1987). El flujo del progra-
ma utilizado para estimar los modelos citados puede solicitarse a
la dirección de correo electrónico del primero de los autores.

Nota

Este trabajo ha sido financiado con fondos de un proyecto de
investigación y desarrollo tecnológico concedido por el Ministerio
de Educación y Ciencia (proyecto BSO 2002-02513).Cuadro 5

Modelos mixture y medidas de acuerdo para los datos del cuadro 2

Modelo Restricciones Probabilidades Medida de Bondad de
latentes acuerdo ajuste

QI Independencia A y B X1= [.600 .079, .321] µ∆= .567 L2(1)= .18; P= .67
ζi heterogéneo AX2= [.51 .361 .129]

BX2= [.144, .727, .129]

QIC Independencia A y B X1= [.518, .25, .232] α= .620 L2(3)= 10.13; P= .02
(Alpha) ζi constante AX2= [.633 .122 .247]

BX2= [.215, .539, .247]

QIH Homogeneidad X1= [.627, .012, .361] µλ= .506 L2(3)= 22.59; P= .00
marginal X2= [.333 .556 .111]
ζi heterogéneo

QICH Homogeneidad X1= [.524, .264, .212] µπ= .570 L2(5)= 40.06; P= .00
marginal X2= [.426 .303 .271]
ζi constante

QIU Efecto nulo A y B X1= [.561, .193, .246] µσ= .579 L2(6)= 43.05; P= .00
ζi heterogéneo X2= [.333 .333 .333]

QIHX Homogeneidad X1= [.482, .300, .218] µκ= .559 L2(5)= 37.61; P= .00
marginal X2= [.482, .300, .218]
Homogeneidad de
clases latentes
ζi constante

Nota: X1 representa probabilidades latentes para la clase 1, que se asumen iguales para A y B; X2
representa probabilidades latentes para la clase 2.

Cuadro 6
Comparativa de los tres enfoques para evaluar el grado de acuerdo con datos

del cuadro 2 modificados en las casillas diagonales (n11 = n22 = n33 = 5)

Modelo Medidas Modelos Modelos
descriptivas loglineales mixture

QI ∆= -.165 µ∆= .063
δi= [.963,.268,4.207] ζi= [.000,.000,3.207]
L2(1)= .18;P= .67 L2(1)= .18;P= .10

QIC λα= -.035 α= .000
δi= [.875] ζi= [.000]

L2(3)= 6.56;P= .09 L2(3)= 6.56;P= .09

QIH λ= -.328 µ= .066
δi= [.556,.200,5.000] ζi= [.000,.000,4.000]
L2(3)= 22.59;P= .00 L2(3)= 22.59;P= .00

QICH π̂= -.170 λπ= -.182 µπ= .000
δi= [.574] ζi= [.000]

L2(5)= 32.94;P= .00 L2(5)= 32.94;P= .00

QIU σ̂= -.131 λσ= -.131 µσ= .000
δi= [.652,.652,.652] ζi= [.000,.000,.000]
L2(5)= 43.05;P= .00 L2(5)= 43.05;P= .00

QIHX κ̂= -.026 No se puede estimar µκ= .000
ζi= [.000]

L2(5)= 36.52;P= .00
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